On Tree Automata that Certify Termination of Left-Linear Term Rewriting Systems

نویسندگان

  • Alfons Geser
  • Dieter Hofbauer
  • Johannes Waldmann
  • Hans Zantema
چکیده

We present a new method for proving termination of term rewriting systems automatically. It is a generalization of the match bound method for string rewriting. To prove that a term rewriting system terminates on a given regular language of terms, we first construct an enriched system over a new signature that simulates the original derivations. The enriched system is an infinite system over an infinite signature, but it is locally terminating: every restriction of the enriched system to a finite signature is terminating. We then construct iteratively a finite tree automaton that accepts the enriched given regular language and is closed under rewriting modulo the enriched system. If this procedure stops, then the enriched system is compact: every enriched derivation involves only a finite signature. Therefore, the original system terminates. We present three methods to construct the enrichment: top heights, roof heights, and match heights. Top and roof heights work for left-linear systems, while match heights give a powerful method for linear systems. For linear systems, the method is strengthened further by a forward closure construction. Using these methods, we give examples for automated termination proofs that cannot be obtained by standard methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reachability Analysis with State-Compatible Automata

Regular tree languages are a popular device for reachability analysis over term rewrite systems, with many applications like analysis of cryptographic protocols, or confluence and termination analysis. At the heart of this approach lies tree automata completion, first introduced by Genet for left-linear rewrite systems. Korp and Middeldorp introduced so-called quasi-deterministic automata to ex...

متن کامل

Some Classes of Term Rewriting Systems for which Termination is Decidable

Termination is one of the central properties of term rewriting systems (TRSs for short). A TRS is called terminating if it does not admit any infinite rewrite sequence. The efforts to find classes of TRSs whose termination is decidable have been made for decades and several positive results have been proposed, for example, right-ground TRSs and right-linear shallow TRSs. In this research, we st...

متن کامل

Improved Functional Flow and Reachability Analyses Using Indexed Linear Tree Grammars

The collecting semantics of a program defines the strongest static property of interest. We study the analysis of the collecting semantics of higher-order functional programs, cast as left-linear term rewriting systems. The analysis generalises functional flow analysis and the reachability problem for term rewriting systems, which are both undecidable. We present an algorithm that uses indexed ...

متن کامل

Certificates for Tree Automata Completion

We consider the problem of certifying the correctness of a protocol or security API through a formal, machine-checkable proof. To this aim, we re-examine the completion algorithm for tree automata and term rewriting systems, that computes an over-approximation of regular sets of terms up to rewriting. We then define a procedure to certify, via a proof, that the result of the completion is indee...

متن کامل

Certifying Confluence of Almost Orthogonal CTRSs via Exact Tree Automata Completion

Suzuki et al. showed that properly oriented, right-stable, orthogonal, and oriented conditional term rewrite systems with extra variables in right-hand sides are confluent. We present our Isabelle/HOL formalization of this result, including two generalizations. On the one hand, we relax proper orientedness and orthogonality to extended proper orientedness and almost orthogonality modulo infeasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Comput.

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2005